NÚMEROS COMPLEJOS

Como sabemos, en R no podemos resolver raíces cuadradas de números negativos, como $\sqrt{-1}$, ya que no existe ningún número real cuyo cuadrado sea igual a -1.

Para eso definimos el símbolo **i** para indicar un número al que: $\mathbf{i}^2 = -1$ \mathbf{i} $\mathbf{i} = \sqrt{-1}$

Teniendo en cuenta la igualdad a partir de la cual lo definimos, y que este número no es real, podemos usarlo para expresar las soluciones que no son reales de algunas ecuaciones.

Ej:
$$x^2 + 1 = 0$$

 $x^2 + 2 = 0$
 $x_1 = i$
 $x_2 = -1$
 $x_1 = i$
 $x_2 = -2$
 $x_2 = -2$
 $x_1 = \sqrt{2} i$
 $x_2 = -\sqrt{2} i$
Ya que: $x_2 = -\sqrt{2} i$
Ya que: $x_2 = -\sqrt{2} i$

Ejercicio 2: Utilicen el símbolo i para expresar las soluciones de las siguientes ecuaciones:

a)
$$x^2 + 4 = 0$$
 b) $x^2 + 5 = 0$ c) $x^2 - 10 = 2x^2$
d) $-x^2 - 9 = 0$ e) $9x^2 + 16 = 0$ f) $(x + 5)^2 = 10x$
g) $\frac{1}{x^2 + 4} - 1 = 1$ h) $(x - 2)(-x - 2) = 20$ i) $(x - 8)^2 = -16x$
j) $3(2 - 2x) = (x - 4)(x - 2)$ k) $(2x^2 - 1)^2 = (1 + 2x)(1 - 2x) - 1$

Ejercicio 3: Completen la siguiente tabla:

Número	Parte Real	Parte Imaginaria	¿es complejo,
Complejo	Re (z)	Im(z)	real o imaginario
Z			puro?
5 + 3i			
	2	8	
	-4	2/3	
	1	-3	
$2 - \sqrt{3} i$			
5 i			
	0	4	
	4	0	
	0	0	

CONJUGADO Y OPUESTO DE UN NÚMERO COMPLEJO

A partir de un número complejo z = a + bi, se definen los siguientes:

* El conjugado de z es $\bar{z} = a - bi$ (la parte real es igual y la parte imaginaria es opuesta)

* El opuesto de z es -z = -a - bi (la partwe real y la parte imaginaria son opuestas) Ejemplos:

$$\overline{z_1} = -1 - 2i$$
 $\overline{z_1} = -1 + 2i$ $-z_1 = 1 + 2i$ $z_2 = 4i$ $-z_2 = -4i$

 $\overline{z_3} = 6 \qquad -z_3 = -6$ $z_3 = 6$

Ejercicio 4: Completen el siguiente cuadro:

Z	$\frac{\overline{z}}{z}$	- z
$\frac{2}{3} + \frac{3}{4}$ i		
	2 – 6 i	
		$-7 + \sqrt{3} i$
	-3	
		$-\sqrt{5}$ i
	$2 - \frac{1}{2}$ i	

OPERACIONES CON NÚMEROS COMPLEJOS

En los siguientes ejemplos pueden observar cómo sumamos, restamos, multiplicamos y dividimos números complejos:

(2+3i)+(1-5i) = (2+1)+(3-5)i = 3-2iSuma:

(2+3i)-(1-5i) = (2-1)+(3-(-5)i) = 1+8iResta:

<u>Multiplicación:</u> $(2+3i) \cdot (1-5i) = 2 \cdot 1 + 2 \cdot (-5i) + 3i \cdot 1 + 3i \cdot (-5i) = 2 - 10i + 3i - 15i^2 = 17 - 7i$ (recordar que $i^2 = -1$)

División:

Para resolver la división de dos números complejos, siendo el divisor no nulo, multiplicamos a ambos por el conjugado del divisor, del siguiente modo:

$$\frac{2+3i}{1-5i} = \frac{2+3i}{1-5i} \cdot \frac{1+5i}{1+5i} = \frac{2+10i+3i+15i^2}{1^2-(5i)^2} = \frac{-13+13i}{1+25} = \frac{1}{2} + \frac{1}{2}i$$

Multiplicar por una fracción de igual numerador y denominador es como multiplicar por 1, por lo tanto, la igualdad no se altera.

Ejercicio 10: Consideren los complejos: $z_1 = -2 + i$; $z_2 = 3 + 5 i$; $z_3 = 4 - i$ resuelvan las siguientes operaciones:

a) $z_1 + z_2 - z_3 =$ b) $z_1 + \overline{z_2} - z_3 =$ c) $\overline{z_1} - \overline{z_3} =$ d) 5. $z_3 =$ e) $(z_1 + z_2) \cdot z_3 =$ f) $(-z_1 + \overline{z_2}) \cdot (\overline{z_1} - z_3) =$ g) $z_1 \cdot z_2 - z_3 =$ h) $(z_3)^2 =$

Ejercicio 11: Consideren los complejos: $z_1 = 3 - i$; $z_2 = -4 i$; $z_3 = 7 + 2 i$ resuelvan las siguientes divisiones:

a) $\frac{z_2}{z_1} =$ b) $\frac{z_1}{z_3} =$ c) $\frac{z_3}{z_2} =$ d) $\frac{z_2}{z_3} =$ e) $16 \cdot \frac{\overline{z_3}}{\overline{z_2}} =$ f) $\frac{1}{z_1} =$

Ejercicio 12: Completen las potencias de i:

 $i^{0} =$ $i^1 = i^2 =$ $i^{3} =$ $i^4 =$

 $i^{5} =$

 $i^6 =$

 $i^{7} =$

EJERCITACIÓN

14) Adición y Sustracción de Números Complejos:

a)
$$(10+3i)+(8+2i)+(4+5i)=$$

b) $(7+5i)-(3-4i)-(-5+2i)=$

b)
$$(7+51)-(3-41)-(-5+21)=$$

c)
$$(1 + \frac{1}{2}i) + (3 - \frac{3}{2}i) + (-4 + i) =$$

d)
$$(-8 + \frac{3}{5}i) + (-\frac{7}{4} + \frac{7}{10}i) + (-\frac{1}{4} - \frac{3}{10}i) =$$

e)
$$(\frac{2}{5}+i)+(\frac{4}{3}-\frac{3}{4}i)+(\frac{2}{15}+\frac{1}{4}i)+(-\frac{28}{15}-\frac{3}{2}i)=$$

f)
$$(\frac{\sqrt{3}}{2} + \frac{i}{2}) + (\frac{\sqrt{3}}{2} - \frac{i}{2}) + (\frac{\sqrt{2}}{2} + i) + (\frac{\sqrt{2}}{2} - i) =$$

$$R: (-10+i)$$

$$R:(-i)$$

R:
$$(\sqrt{3} + \sqrt{2})$$

15) Multiplicación y División de Números Complejos:

a)
$$(10 + 2i) \cdot (3 + 15i) =$$

b)
$$(-5+2i)$$
. $(5+2i)$ =

c)
$$(-1+i) \cdot (-1-i) =$$

d)
$$-\frac{3}{5}i.\frac{4}{3}i =$$

e)
$$(\sqrt{2} + \sqrt{3} i) \cdot (\sqrt{3} + \sqrt{2} i) =$$

f)
$$(\frac{\sqrt{2}}{2}+i).(\frac{2}{3}+4i).(\frac{\sqrt{2}}{2}-i) =$$

g)
$$(-4+2i)$$
: $(1+i)$ =

h)
$$(-1+i):(-1-i)=$$

$$i) (4 + 2 i) : i =$$

$${\rm j})\; (-\frac{1}{4}+\frac{2}{5}i): (\frac{2}{5}+\frac{1}{4}i) =$$

k)
$$(\sqrt{2} + \sqrt{3} i)$$
: $(\sqrt{2} - \sqrt{3} i)$ =

$$R: (-29)$$

$$R: (1+6i)$$

$$R: (-1+3i)$$

$$R: (-i)$$

$$R: (2-4i)$$

R:
$$\left(-\frac{1}{5} + \frac{2\sqrt{6}}{5}i\right)$$